Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 257(Pt 2): 128726, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092113

RESUMO

In this work, an adsorption phenomenon putatively involved in the olfactory sense of phenylacetic acid, 4-chlorophenylacetic acid, and 4-methoxyphenylacetic acid pheromones in the Zebrafish olfactory receptor ORA1 was a helpful mechanism in interpreting and characterizing the olfaction process at a molecular level. Hence, the experimental dose-olfactory response curves were fitted by applying the one-layer adsorption model with a single energy (1LM1E). On one hand, the different parameters introduced in the selected model were used to microscopically study the three olfactory systems. Indeed, the fitting results showed that phenylacetic acid displayed the greatest maximum olfactory response at saturation, due to the effect of functional groups at the R4 position. The three pheromones were docked via a non-parallel orientation and the adsorption process was a multi-molecular mechanism. The sizes of different binding pockets of ORA1 were determined through the estimation of the olfactory receptor site size distributions (stereographic characterization). The estimated adsorption energies, ranging from 17.340 to 21.332 kJ/mol, can be used to describe the energetic interactions between the studied pheromones and the Zebrafish ORA1 binding pockets. The spectrums of the adsorption energy distributions of phenylacetic acid, 4-chlorophenylacetic acid, and 4-methoxyphenylacetic acid, which were spread out from 10 to 32.5 kJ/mol, 5 to 30 kJ/mol, and 10 to 32.5 kJ/mol, respectively, was determined to estimate the corresponding olfactory bands (energetic characterization). On the other hand, three thermodynamic functions were estimated in order to macroscopically study the three olfactory systems.


Assuntos
Fenilacetatos , Receptores Odorantes , Animais , Receptores Odorantes/metabolismo , Peixe-Zebra/metabolismo , Feromônios , Física
2.
Int J Biol Macromol ; 242(Pt 4): 125156, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37270136

RESUMO

The increased use of antibiotics worldwide turned into a serious preoccupation due to their environmental and health impacts. Since the majority of antibiotic residuals are hardly eliminated from wastewater, based on usual methods, other treatments receive considerable attention. Adsorption is known as the most effective method of the treatment of antibiotics. In this paper, the adsorption isotherms of doripenem, ampicillin, and amoxicillin on bentonite-chitosan composite are determined at three temperatures, T = 303.15, 313.15 and 323.15 K, which are used to achieve a theoretical investigation of the removal phenomenon, based on a statistical physics theory. Three analytical models are utilized to describe the AMO, AMP, and DOR adsorption phenomena at the molecular level. From the fitting results, all antibiotic adsorption on a BC adsorbent is associated with the monolayer formation with one type of site. Concerning the number of adsorbed molecules per site (n), it is concluded that multi-docking (n < 1) and multi-molecular (n > 1) phenomena are feasible for AMO, AMP, and DOR adsorption on BC. The adsorption amounts at saturation of the BC adsorbent, deduced by the monolayer model, are found to be 70.4-88.0 mg/g for doripenem, 57.8-79.2 mg/g for ampicillin and 38.6-67.5 mg/g for amoxicillin indicating that the antibiotics adsorption performance of BC was greatly depended on temperature where the adsorption capacities increased with the increment of this operating variable. All adsorption systems are demonstrated by a calculation of the energy of adsorption, considering that the extrication of these pollutants implies physical interactions. The thermodynamic interpretation confirms the spontaneous and feasible nature of the adsorption of the three antibiotics on BC adsorbent. In brief, BC sample is regarded as a promising adsorbent to extract antibiotics from water and presents important potentials to be effected in wastewater handling at industrial level.


Assuntos
Antibacterianos , Quitosana , Bentonita , Águas Residuárias , Adsorção , Doripenem , Amoxicilina , Ampicilina
3.
Food Chem ; 415: 135782, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36868068

RESUMO

An advanced monolayer adsorption model of an ideal gas was successfully employed to investigate the adsorption of vanillin, vanillin methyl ether, vanillin ethyl ether, and vanillin acetate odorants on mouse eugenol olfactory receptor mOR-EG. In order to understand the adsorption process putatively introduced in olfactory perception, model parameters were analyzed. Hence, fitting results showed that the studied vanilla odorants were linked in mOR-EG binding pockets with a non-parallel orientation, and their adsorption was a multi-molecular process (n > 1). The adsorption energy values that ranged from 14.021 to 19.193 kJ/mol suggested that the four vanilla odorants were physisorbed on mOR-EG (ΔEa < 40 kJ/mol) and the adsorption mechanism may be considered as an exothermic mechanism (ΔEa > 0). The estimated parameters may also be utilized for the quantitative characterization of the interactions of the studied odorants with mOR-EG to determine the corresponding olfactory bands ranging from 8 to 24.5 kJ/mol.


Assuntos
Odorantes , Vanilla , Animais , Camundongos , Vanilla/química , Benzaldeídos , Física
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...